Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.841
Filtrar
1.
J Psychopharmacol ; 37(9): 937-941, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37530456

RESUMO

Alcohol use disorder (AUD) is a prevalent condition associated with high degree of comorbidity and mortality. Among the few approved pharmacotherapies for AUD, two involve opioid receptor antagonism. Naltrexone and nalmefene are thought to act via opioid receptor blockage to reduce neural response to alcohol and drug-associated cues and consumption, but there have been limited efforts to characterize these effects in humans. In these studies, we sought to test the magnitude of opioid antagonism effects on neural response to monetary rewards in two groups: light drinkers (for the naltrexone study) and heavy drinkers (for the nalmefene study). We conducted double-blind, randomized, crossover pilot studies of reward activation in the brain following acute administration of opioid antagonist and placebo in 11 light and 9 heavy alcohol users. We used a monetary incentive delay task during functional MRI. We found a main effect of cue type on BOLD activation in the nucleus accumbens, demonstrating a neural reward response. The effect of opioid antagonism, relative to placebo, was small and nonsignificant for reward activation in the accumbens for both light and heavy alcohol users. Based on the results of two pilot studies, opioid antagonist medications do not appear to decrease neural activation to monetary rewards in the nucleus accumbens relative to placebo.


Assuntos
Alcoolismo , Antagonistas de Entorpecentes , Humanos , Alcoolismo/tratamento farmacológico , Analgésicos Opioides/farmacologia , Imageamento por Ressonância Magnética/métodos , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Projetos Piloto , Receptores Opioides/efeitos dos fármacos , Recompensa
2.
Curr Pharm Des ; 28(32): 2639-2652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35538798

RESUMO

BACKGROUND: Previous studies have reported that benzodiazepines (BZDs) seem to enhance euphoric and reinforcing properties of opioids in opioid users so that a direct effect on opioid receptors has been postulated, together with a possible synergistic induction of severe side effects due to co use of BDZs and opioids. This is particularly worrisome given the appearance on the market of designer benzodiazepines (DBZDs), whose activity/toxicity profiles are scarcely known. OBJECTIVES: This study aimed to evaluate, through computational studies, the binding affinity (or lack thereof) of 101 DBZDs identified online on the kappa, mu, and delta opioid receptors (K, M, DOR); and to assess whether their mechanism of action could include activation of the latter. METHODS: MOE® was used for the computational studies. Pharmacophore mapping based on strong opioids agonist binders' 3D chemical features was used to filter the DBZDs. Resultant DBZDs were docked into the crystallised 3D active conformation of KOR (PDB6B73), DOR (PDB6PT3) and MOR (PDB5C1M). Co-crystallised ligands and four strong agonists were used as reference compounds. A score (S, Kcal/mol) representative of the predicted binding affinity, and a description of ligand interactions were obtained from MOE®. RESULTS: The docking results, filtered for S < -8.0 and the interaction with the Asp residue, identified five DBZDs as putative binders of the three ORs : ciclotizolam, fluloprazolam, JQ1, Ro 48-6791, and Ro 48-8684. CONCLUSION: It may be inferred that at least some DBZDs may have the potential to activate opioid receptors. This could mediate/increase their anxiolytic, analgesic, and addiction potentials, as well as worsen the side effects associated with opioid co-use.


Assuntos
Analgésicos Opioides , Ansiolíticos , Benzodiazepinas , Drogas Desenhadas , Receptores Opioides , Humanos , Analgésicos , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Benzodiazepinas/efeitos adversos , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Ligantes , Receptores Opioides/agonistas , Receptores Opioides/efeitos dos fármacos , Receptores Opioides/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides delta/efeitos dos fármacos , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/efeitos dos fármacos , Receptores Opioides mu/metabolismo , Drogas Desenhadas/efeitos adversos , Drogas Desenhadas/química , Drogas Desenhadas/farmacologia
3.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G66-G78, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755545

RESUMO

Allosteric modulators (AMs) are molecules that can fine-tune signaling by G protein-coupled receptors (GPCRs). Although they are a promising therapeutic approach for treating a range of disorders, allosteric modulation of GPCRs in the context of the enteric nervous system (ENS) and digestive dysfunction remains largely unexplored. This study examined allosteric modulation of the delta opioid receptor (DOR) in the ENS and assessed the suitability of DOR AMs for the treatment of irritable bowel syndrome (IBS) symptoms using mouse models. The effects of the positive allosteric modulator (PAM) of DOR, BMS-986187, on neurogenic contractions of the mouse colon and on DOR internalization in enteric neurons were quantified. The ability of BMS-986187 to influence colonic motility was assessed both in vitro and in vivo. BMS-986187 displayed DOR-selective PAM-agonist activity and orthosteric agonist probe dependence in the mouse colon. BMS-986187 augmented the inhibitory effects of DOR agonists on neurogenic contractions and enhanced reflex-evoked DOR internalization in myenteric neurons. BMS-986187 significantly increased DOR endocytosis in myenteric neurons in response to the weakly internalizing agonist ARM390. BMS-986187 reduced the generation of complex motor patterns in the isolated intact colon. BMS-986187 reduced fecal output and diarrhea onset in the novel environment stress and castor oil models of IBS symptoms, respectively. DOR PAMs enhance DOR-mediated signaling in the ENS and have potential benefit for the treatment of dysmotility. This study provides proof of concept to support the use of GPCR AMs for the treatment of gastrointestinal motility disorders.NEW & NOTEWORTHY This study assesses the use of positive allosteric modulation as a pharmacological approach to enhance opioid receptor signaling in the enteric nervous system. We demonstrate that selective modulation of endogenous delta opioid receptor signaling can suppress colonic motility without causing constipation. We propose that allosteric modulation of opioid receptor signaling may be a therapeutic strategy to normalize gastrointestinal motility in conditions such as irritable bowel syndrome.


Assuntos
Sistema Nervoso Entérico/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Receptores Opioides delta/efeitos dos fármacos , Xantonas/farmacologia , Analgésicos Opioides/farmacologia , Benzamidas/farmacologia , Colo/efeitos dos fármacos , Sistema Nervoso Entérico/fisiopatologia , Motilidade Gastrointestinal/fisiologia , Humanos , Receptores Opioides/efeitos dos fármacos , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Receptores Opioides mu/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768778

RESUMO

Biphalin, one of the opioid agonists, is a dimeric analog of enkephalin with a high affinity for opioid receptors. Opioid receptors are widespread in the central nervous system and in peripheral neuronal and non-neuronal tissues. Hence, these receptors and their agonists, which play an important role in pain blocking, may also be involved in the regulation of other physiological functions. Biphalin was designed and synthesized in 1982 by Lipkowski as an analgesic peptide. Extensive further research in various laboratories on the antinociceptive effects of biphalin has shown its excellent properties. It has been demonstrated that biphalin exhibits an analgesic effect in acute, neuropathic, and chronic animal pain models, and is 1000 times more potent than morphine when administered intrathecally. In the course of the broad conducted research devoted primarily to the antinociceptive effect of this compound, it has been found that biphalin may also potentially participate in the regulation of other opioid system-dependent functions. Nearly 40 years of research on the properties of biphalin have shown that it may play a beneficial role as an antiviral, antiproliferative, anti-inflammatory, and neuroprotective agent, and may also affect many physiological functions. This integral review analyzes the literature on the multidirectional biological effects of biphalin and its potential in the treatment of many opioid system-dependent pathophysiological diseases.


Assuntos
Encefalinas/farmacologia , Encefalinas/uso terapêutico , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Analgésicos/metabolismo , Analgésicos/farmacologia , Analgésicos Opioides/agonistas , Analgésicos Opioides/metabolismo , Encefalinas/química , Encefalinas/metabolismo , Morfina/farmacologia , Transtornos Relacionados ao Uso de Opioides/metabolismo , Dor/tratamento farmacológico , Receptores Opioides/efeitos dos fármacos , Receptores Opioides/metabolismo
5.
J Psychopharmacol ; 35(12): 1473-1478, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34608842

RESUMO

BACKGROUND: Clinical trials with putative antidepressants can be difficult to execute as it can take up to 8 weeks before differences emerge between drug and placebo, and long expensive trials often fail. Implementation of early response biomarkers could aid this process significantly with potential to identify new treatments. AIMS: In a secondary analysis, we examined the association of early effects on emotional processing with later clinical outcome following treatment with the novel NOP antagonist LY2940094 versus placebo. We hypothesised that early induction of positive bias would be associated with reduced severity of depression after 8 weeks of treatment. METHODS: This was a multicentre, randomised, double-blind, parallel-group, fixed-dose, placebo-controlled, 8 week study to assess sensitivity of the facial emotional recognition task (FERT) to early changes in emotional bias induced by LY2940094. Patients who met diagnostic criteria for major depression were randomised to receive LY2940094 (N = 70) or placebo (N = 66). At week 1 and 6, the FERT was completed by 33 patients in the LY2940094 group and 34 in the placebo group. RESULTS: Patients identified happy faces with higher accuracy (Wald χ2(1,33) = 14.25, p < 0.001) after 1 week treatment with LY290094 compared to placebo (Wald χ2(1,32) = 0.83, p = 0.36) and this correlated with eventual treatment response measured by the Hamilton Depression Rating Scale 7 weeks later. CONCLUSION: These data suggest that emotional processing biomarkers may be sensitive to early effects of antidepressant treatment indicative of later clinical response. Further studies in this area may be useful in developing new treatments and clinical trial designs for predicting antidepressant response.


Assuntos
Transtorno Depressivo Maior/tratamento farmacológico , Emoções/efeitos dos fármacos , Expressão Facial , Reconhecimento Facial/efeitos dos fármacos , Antagonistas de Entorpecentes/farmacologia , Piranos/farmacologia , Receptores Opioides/efeitos dos fármacos , Compostos de Espiro/farmacologia , Adulto , Biomarcadores , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antagonistas de Entorpecentes/administração & dosagem , Avaliação de Resultados em Cuidados de Saúde , Piranos/administração & dosagem , Compostos de Espiro/administração & dosagem , Receptor de Nociceptina
6.
BMC Cancer ; 21(1): 1128, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34670518

RESUMO

BACKGROUND: Clinically, the coadministration of opioids to enhance antinociception and decrease tolerance has attracted increasing research attention. We investigated the effects of dezocine, a mu- and kappa-opioid receptor agonist/antagonist, on morphine tolerance and explored the involvement of opioid receptor expression in a rat model of bone cancer pain. METHODS: Thermal nociceptive thresholds were measured after the subcutaneous injection of morphine (10 mg/kg) alone or combined with dezocine (10 or 1 mg/kg) for 7 consecutive days. Real-time PCR and western blot analysis were used to examine opioid receptor expression in the periaqueductal gray (PAG) and spinal cord. RESULTS: The analgesic effect was significantly decreased after 4 days of morphine administration. We observed that low-dose dezocine significantly attenuated morphine tolerance without reducing the analgesic effect of morphine. Low-dose dezocine coadministration significantly reversed the downregulated expression of mu (MOR) and delta (DOR) opioid receptors in the PAG and the upregulated expression of kappa (KOR) and DOR in the spinal cord induced by morphine. Moreover, low-dose dezocine coadministered with morphine significantly inhibited KOR expression in both the PAG and spinal cord. CONCLUSIONS: The combination of low-dose dezocine with morphine may prevent or delay the development of morphine tolerance in a rat model of bone cancer pain. The regulation of opioid receptor expression in the PAG and spinal cord may be part of the mechanism.


Assuntos
Analgésicos Opioides/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Dor do Câncer/tratamento farmacológico , Tolerância a Medicamentos , Morfina/farmacologia , Receptores Opioides/efeitos dos fármacos , Tetra-Hidronaftalenos/farmacologia , Analgésicos Opioides/administração & dosagem , Animais , Neoplasias Ósseas/complicações , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Dor do Câncer/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Interações Medicamentosas , Quimioterapia Combinada/métodos , Feminino , Temperatura Alta , Hiperalgesia/fisiopatologia , Morfina/administração & dosagem , Medição da Dor/efeitos dos fármacos , Limiar da Dor , Substância Cinzenta Periaquedutal/metabolismo , Ratos , Ratos Wistar , Receptores Opioides/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Medula Espinal/metabolismo , Tetra-Hidronaftalenos/administração & dosagem , Regulação para Cima/efeitos dos fármacos
7.
Forensic Sci Int ; 327: 110989, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34509061

RESUMO

After their first emergence in 2009, Novel synthetic opioids (NSO) have become an emerging class of New Psychoactive Substances (NPS) on the market for these new drugs. So far, 67 NSO have been reported to the Early Warning system of the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). It is presumed that NSO mainly target the four known opioid receptors, i.e. the µ-opioid (MOR), the δ-opioid (DOR), the κ-opioid (KOR) and nociceptin receptors and that their consumption can result in serious adverse effects such as massive respiratory depression or death. In the present study we investigated the in vivo and in vitro metabolism of brorphine, a NSO that was first identified on the NPS market in August 2019 in the United States, using both a pooled human liver microsome assay and real forensic case samples. For the detection of metabolites LC-HR-MS/MS was used and quantification of brorphine was performed using an LC-MS/MS method. Additionally, we pharmacologically characterized brorphine regarding its activation of the MOR and KOR via G protein recruitment using the [35S]-GTPγS assay. In forensic urine samples, 14 distinct metabolites were identified, whereas in blood only four metabolites could be found. The pooled human liver microsome assay generated six distinct in vitro phase I metabolites. The most prominent in vivo metabolite was formed by N-oxydation, whereas the main in vitro metabolite was formed by hydroxylation. The pharmacological characterization at the MOR and KOR revealed brorphine to be a potent MOR agonist and a weak, partial KOR agonist in the [35S]-GTPγS assay.


Assuntos
Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Imidazóis/metabolismo , Imidazóis/farmacologia , Piperidinas/metabolismo , Piperidinas/farmacologia , Receptores Opioides/efeitos dos fármacos , Detecção do Abuso de Substâncias/métodos , Analgésicos Opioides/sangue , Analgésicos Opioides/urina , Cromatografia Líquida , Proteínas de Ligação ao GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Imidazóis/sangue , Imidazóis/urina , Microssomos Hepáticos/metabolismo , Piperidinas/sangue , Piperidinas/urina , Espectrometria de Massas em Tandem
8.
J Clin Pharmacol ; 61 Suppl 2: S100-S113, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34396556

RESUMO

Hallucinogens constitute a unique class of substances that cause changes in the user's thoughts, perceptions, and mood through various mechanisms of action. Although the serotonergic hallucinogens such as lysergic acid diethylamide, psilocybin, and N,N-dimethyltryptamine have been termed the classical hallucinogens, many hallucinogens elicit their actions through other mechanisms such as N-methyl-D-aspartate receptor antagonism, opioid receptor agonism, or inhibition of the reuptake of monoamines including serotonin, norepinephrine, and dopamine. The aim of this article is to compare the pharmacologic similarities and differences among substances within the hallucinogen class and their impact on physical and psychiatric effects. Potential toxicities, including life-threatening and long-term effects, will be reviewed.


Assuntos
Alucinógenos/farmacologia , Monoaminas Biogênicas/metabolismo , Alucinógenos/química , Alucinógenos/toxicidade , Humanos , Dietilamida do Ácido Lisérgico/farmacologia , Psilocibina/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides/efeitos dos fármacos , Receptores Opioides/metabolismo , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Triptaminas/farmacologia , Triptaminas/toxicidade
9.
J Ethnopharmacol ; 276: 114182, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33964360

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ophiorrhiza rugosa var. prostrata is a traditional medicinal plant used by the indigenous and local tribes (Chakma, Marma and Tanchangya) of Bangladesh for the management of chest pain, body ache, and earache. However, the knowledge of anti-nociceptive and anti-inflammatory potentials of this plant is scarce. AIM OF THE STUDY: Therefore, we scrutinized the anti-nociceptive and anti-inflammatory properties of O. rugosa leaves along with its possible mechanism(s) of action using chemical and heat-induced pain models. METHODS AND MATERIALS: O. rugosa was extracted using 100% ethanol (EEOR) followed by exploring phytochemicals and assessing acute toxicity. To determine anti-nociceptive potentials, chemical-induced (acetic acid and formalin) and heat-induced (hot plate and tail immersion) nociceptive models were followed. To investigate the possible involvement of opioid receptors during formalin, hot plate, and tail immersion tests, naltrexone was administered whereas methylene blue and glibenclamide were used to explore cGMP involvement and ATP-sensitive K+ channel pathways, respectively. Moreover, the anti-inflammatory potential was assessed using the carrageenan-induced paw edema test model. Motor behaviours of EEOR were assessed by the open-field test. Finally, bioactive constituents (identified by GC-MS) from O. rugosa were subjected to molecular docking and ADME/t analysis to evaluate its potency and safety. RESULTS: During chemical-induced and heat-induced pain models, EEOR exhibited significant and effective nociception suppression at all experimental doses (200 and 400 mg/kg). Also, the administration of naltrexone corroborated the association of opioid receptors with the anti-nociceptive activity by EEOR. Similarly, cGMP and ATP-sensitive K+ channel pathways were also found to be involved in the anti-nociceptive mechanism. Furthermore, significant and dose-dependent inhibition of inflammation induced by carrageenan was recorded for EEOR. Both doses of EEOR did not affect the animal's locomotor capacity in the open-field test. Besides, in silico test identified the key compounds (loliolide, harman, squalene, vitamin E, and gamma-sitosterol) that inhibited some particular receptors regarding pain and inflammation. CONCLUSION: This research exposes central and peripheral pain intervention as well as anti-inflammatory activity of O. rugosa. Also, the identified compounds from this plant support its activities by effectively inhibiting anti-nociceptive and anti-inflammatory receptors. Overall, these outcomes valorize the ethnomedicinal efficacy of O. rugosa in managing various painful conditions.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Dor/tratamento farmacológico , Dor/metabolismo , Extratos Vegetais/farmacologia , Rubiaceae/química , Ácido Acético/toxicidade , Analgésicos/química , Analgésicos/isolamento & purificação , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Carragenina/toxicidade , Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/tratamento farmacológico , Feminino , Formaldeído/toxicidade , Temperatura Alta/efeitos adversos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Nociceptividade/efeitos dos fármacos , Dor/etiologia , Sistema Nervoso Periférico/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Receptores Opioides/efeitos dos fármacos
10.
Eur J Pharmacol ; 902: 174091, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33865830

RESUMO

The synthesis of a novel cyclohexanone derivative (CHD; Ethyl 6-(4-metohxyphenyl)-2-oxo-4-phenylcyclohexe-3-enecarboxylate) was described and the subsequent aim was to perform an in vitro, in vivo and in silico pharmacological evaluation as a putative anti-nociceptive and anti-inflammatory agent in mice. Initial in vitro studies revealed that CHD inhibited both cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzymes and it also reduced mRNA expression of COX-2 and the pro-inflammatory cytokines TNF-α and IL-1ß. It was then shown that CHD dose dependently inhibited chemically induced tonic nociception in the abdominal constriction assay and also phasic thermal nociception (i.e. anti-nociception) in the hot plate and tail immersion tests in comparison with aspirin and tramadol respectively. The thermal test outcomes indicated a possible moderate centrally mediated anti-nociception which, in the case of the hot plate test, was pentylenetetrazole (PTZ) and naloxone reversible, implicating GABAergic and opioidergic mechanisms. CHD was also effective against both the neurogenic and inflammatory mediator phases induced in the formalin test and it also disclosed anti-inflammatory activity against the phlogistic agents, carrageenan, serotonin, histamine and xylene compared with standard drugs in edema volume tests. In silico studies indicated that CHD possessed preferential affinity for GABAA, opioid and COX-2 target sites and this was supported by molecular dynamic simulations where computation of free energy of binding also favored the formation of stable complexes with these sites. These findings suggest that CHD has prospective anti-nociceptive and anti-inflammatory properties, probably mediated through GABAergic and opioidergic interactions supplemented by COX-2 and 5-LOX enzyme inhibition in addition to reducing pro-inflammatory cytokine expression. CHD may therefore possess potentially beneficial therapeutic effectiveness in the management of inflammation and pain.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Cicloexanonas/farmacologia , Cicloexenos/farmacologia , Inflamação/tratamento farmacológico , Dor Nociceptiva/tratamento farmacológico , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Araquidonato 5-Lipoxigenase/metabolismo , Comportamento Animal/efeitos dos fármacos , Simulação por Computador , Cicloexanonas/química , Cicloexanonas/uso terapêutico , Cicloexanonas/toxicidade , Cicloexenos/química , Cicloexenos/uso terapêutico , Cicloexenos/toxicidade , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/toxicidade , Citocinas/genética , Citocinas/metabolismo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Feminino , Inflamação/induzido quimicamente , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Inibidores de Lipoxigenase/toxicidade , Masculino , Camundongos Endogâmicos BALB C , Dor Nociceptiva/induzido quimicamente , Receptores de GABA/química , Receptores de GABA/efeitos dos fármacos , Receptores Opioides/química , Receptores Opioides/efeitos dos fármacos
11.
Eur J Pharmacol ; 900: 174075, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811835

RESUMO

Cuminic alcohol (4-isopropylbenzyl alcohol; 4-IPBA) is a monocyclic terpenoid found in the analgesic medicinal plants Cuminum cyminum and Bunium persicum. The current study assessed the analgesic effects of 4-IPBA in different animal models of pain. Hot plate, formalin, and acetic acid tests were used to evaluate nociceptive pain in mice. The involvement of opioid receptors and the L-arginine/NO/cGMP/K+ channel pathway in 4-IPBA effects were investigated. Allodynia and hyperalgesia were assessed following peripheral neuropathy induced by chronic constriction of the sciatic nerve in rats. The spinal levels of inflammatory cytokines were measured using the ELISA method. The drugs and compounds were administered intraperitoneally. The results showed that 4-IPBA (200 and 400 mg/kg) significantly prolonged the hot plate latency. This effect was antagonized by naloxone (2 mg/kg). 4-IPBA (25-100 mg/kg) also significantly attenuated formalin- and acetic acid-induced nociceptive pain. L-arginine (200 mg/kg), sodium nitroprusside (0.25 mg/kg), and sildenafil (0.5 mg/kg) reversed while L-NAME (30 mg/kg) and methylene blue (20 mg/kg) potentiated the antinociceptive effects of 4-IPBA in the writhing test. Glibenclamide (10 mg/kg) and tetraethylammonium chloride (4 mg/kg) did not have any influence on the 4-IPBA effect. Furthermore, 4-IPBA (6.25-25 mg/kg) significantly relieved mechanical allodynia, cold allodynia, and hyperalgesia in rats. The concentrations of TNF-α and IL-1ß in the spinal cord of rats were decreased by 4-IPBA. No evidence of 4-IPBA-induced toxicity was found in behavioral or histopathological examinations. These results demonstrate that 4-IPBA attenuates nociceptive and neuropathic pain through the involvement of opioid receptors, the L-arginine/NO/cGMP pathway, and anti-inflammatory functions.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , AMP Cíclico , Citocinas , Neuralgia/tratamento farmacológico , Óxido Nítrico , Nociceptividade/efeitos dos fármacos , Dor/tratamento farmacológico , Receptores Opioides/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Neuralgia/psicologia , Dor/psicologia , Medição da Dor/efeitos dos fármacos , Canais de Potássio/efeitos dos fármacos
12.
Eur J Pharmacol ; 901: 174089, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33826922

RESUMO

The participation of the peripheral opioid and cannabinoid endogenous systems in modulating muscle pain and inflammation has not been fully explored. Thus, the aim of this study was to investigate the involvement of these endogenous systems during muscular-tissue hyperalgesia induced by inflammation. Hyperalgesia was induced by carrageenan injection into the tibialis anterior muscles of male Wistar rats. We padronized an available Randal-Sellito test adaptation to evaluate nociceptive behavior elicited by mechanical insult in muscles. Western blot analysis was performed to evaluate the expression levels of opioid and cannabinoid receptors in the dorsal root ganglia. The non-selective opioid peptide receptor antagonist (naloxone) and the selective mu opioid receptor MOP (clocinnamox) and kappa opioid receptor KOP (nor-binaltorphimine) antagonists were able to intensify carrageenan-induced muscular hyperalgesia. On the other hand, the selective delta opioid receptor (DOP) antagonist (naltrindole) did not present any effect on nociceptive behavior. Moreover, the selective inhibitor of aminopeptidases (Bestatin) provoked considerable dose-dependent analgesia when intramuscularly injected into the hyperalgesic muscle. The CB1 receptor antagonist (AM251), but not the CB2 receptor antagonist (AM630), intensified muscle hyperalgesia. All irreversible inhibitors of anandamide hydrolase (MAFP), the inhibitor for monoacylglycerol lipase (JZL184) and the anandamide reuptake inhibitor (VDM11) decreased carrageenan-induced hyperalgesia in muscular tissue. Lastly, MOP, KOP and CB1 expression levels in DRG were baseline even after muscular injection with carrageenan. The endogenous opioid and cannabinoid systems participate in peripheral muscle pain control through the activation of MOP, KOP and CB1 receptors.


Assuntos
Mialgia/tratamento farmacológico , Receptores de Canabinoides/fisiologia , Receptores Opioides/fisiologia , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Carragenina , Cinamatos/farmacologia , Endocanabinoides/antagonistas & inibidores , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/psicologia , Masculino , Monoacilglicerol Lipases/antagonistas & inibidores , Derivados da Morfina/farmacologia , Mialgia/induzido quimicamente , Mialgia/psicologia , Naloxona/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Medição da Dor/efeitos dos fármacos , Alcamidas Poli-Insaturadas/antagonistas & inibidores , Ratos , Ratos Wistar , Receptores de Canabinoides/efeitos dos fármacos , Receptores Opioides/efeitos dos fármacos , Receptores Opioides delta/efeitos dos fármacos , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides mu/efeitos dos fármacos
13.
Basic Clin Pharmacol Toxicol ; 128(6): 731-740, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33533572

RESUMO

Chimeric peptide MCRT (YPFPFRTic-NH2 ) was a multifunctional ligand of opioid and neuropeptide FF (NPFF) receptors and reported to be potentially antalgic in acute tail-flick test. Here, we developed spared nerve injury (SNI) model to explore its efficacy in chronic neuropathic pain. Analgesic tolerance, opioid-induced hyperalgesia and gastrointestinal transit were measured for safety evaluation. Intracerebroventricular (i.c.v.) and intraplantar (i.pl.) injections were conducted as central and peripheral routes, respectively. Results demonstrated that MCRT alleviated neuropathic pain effectively and efficiently, with the ED50 values of 4.93 nmol/kg at the central level and 3.11 nmol/kg at the peripheral level. The antagonist blocking study verified the involvement of mu-, delta-opioid and NPFF receptors in MCRT produced anti-allodynia. Moreover, the separation of analgesia from unwanted effects was preliminarily achieved and that MCRT caused neither analgesic tolerance nor hyperalgesia after chronic i.c.v. administration, nor constipation after i.pl. administration. Notably, the local efficacy of MCRT in SNI mice was about one thousandfold higher than morphine and ten thousandfold higher than pregabalin, indicating a great promise in the future treatment of neuropathic pain.


Assuntos
Analgésicos Opioides/farmacologia , Endorfinas/farmacologia , Neuralgia/tratamento farmacológico , Receptores de Neuropeptídeos/efeitos dos fármacos , Receptores Opioides/efeitos dos fármacos , Animais , Ligantes , Camundongos , Morfina , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides mu/agonistas
14.
Neurosci Lett ; 748: 135735, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33592307

RESUMO

Opioid agonists are used in clinic for pain management, however this application is challenged by development of tolerance and dependence following prolonged exposure. Various approaches have been suggested to address this concern, however, there is still no consensus among the researchers. Neural processing of sleep and nociception are co-regulated through shared brain regions having bidirectional interplays. Thus, we aimed to investigate whether application of REM sleep deprivation (REM-SD) could affect morphine analgesic tolerance and dependence. To this end, adult male rats underwent sleep deprivation during light and dark phases (LSD and DSD, respectively) using the inverted flower pot method and then tolerance and dependence was induced by repeated injection of morphine for 7 days (10 mg/kg, daily, i.p.). Results indicated that REM-SD delays the development of tolerance to morphine during both phases; however this effect was more potent following LSD. Moreover, LSD decreased the baseline thermal threshold and total withdrawal score. One possible hypothesis for our observations is REM-SD-induced attenuation of orexin system which is still controversial among the researchers. Other stronger possibilities might be down-regulation of opioid receptors in response to sleep loss experience. Finally, it seems that modification of sleep periods may assist to decrease the severity of opioid tolerance and dependence.


Assuntos
Analgésicos Opioides/farmacologia , Analgésicos/farmacologia , Dor/tratamento farmacológico , Privação do Sono/fisiopatologia , Animais , Encéfalo/efeitos dos fármacos , Tolerância a Medicamentos/fisiologia , Masculino , Morfina/farmacologia , Ratos Wistar , Receptores Opioides/efeitos dos fármacos , Privação do Sono/tratamento farmacológico
15.
Eur J Pharmacol ; 896: 173900, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545158

RESUMO

Tissue injury results in the release of inflammatory mediators, including a cascade of nociceptive substances, which contribute to development of hyperalgesia. In addition, during this process endogenous analgesic substances are also peripherally released with the aim of controlling the hyperalgesia. Thus, the present study aimed to investigate whether inflammatory mediators TNF-α, IL-1ß, CXCL1, norepinephrine (NE) and prostaglandin E2 (PGE2) may be involved in the deflagration of peripheral endogenous modulation of inflammatory pain by activation of the opioid system. Thus, male Swiss mice and the paw withdrawal test were used. All substances were injected by the intraplantar route. Carrageenan, TNF-α, CXCL-1, IL1-ß, NE and PGE2 induced hyperalgesia. Selectives µ (clocinamox), δ (naltrindole) and κ (norbinaltorphimine, nor-BNI) and non-selective (naloxone) opioid receptor antagonists potentiated the hyperalgesia induced by carrageenan, TNF-α, CXCL-1 and IL1-ß. In contrast, when the enzyme N-aminopeptidase involved in the degradation of endogenous opioid peptides was inhibited by bestatin, the hyperalgesia was significantly reduced. In addition, the western blotting assay indicated that the expression of the opioid δ receptor was increased after intraplantar injection of carrageenan. The data obtained in this work corroborate the hypothesis that TNF-α, CXCL-1 and IL-ß cause, in addition to hyperalgesia, the release of endogenous substances such as opioid peptides, which in turn exert endogenous control over peripheral inflammatory pain.


Assuntos
Quimiocina CXCL1 , Hiperalgesia/induzido quimicamente , Interleucina-1beta , Nociceptividade , Dor Nociceptiva/induzido quimicamente , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo , Fator de Necrose Tumoral alfa , Animais , Carragenina , Dinoprostona , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Hiperalgesia/prevenção & controle , Masculino , Camundongos , Antagonistas de Entorpecentes/farmacologia , Nociceptividade/efeitos dos fármacos , Dor Nociceptiva/metabolismo , Dor Nociceptiva/fisiopatologia , Dor Nociceptiva/prevenção & controle , Norepinefrina , Receptores Opioides/efeitos dos fármacos , Transdução de Sinais
16.
Methods Mol Biol ; 2201: 247-251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32975805

RESUMO

Alcohol dependence continues to be an important health concern and animal models are critical to furthering our understanding of this complex disease. A hallmark feature of alcoholism is a significant increase in alcohol drinking over time. While several different animal models of excessive alcohol (ethanol) drinking exist for mice and rats, a growing number of laboratories are using a model that combines chronic ethanol exposure procedures with voluntary ethanol drinking with mice as experimental subjects. In the last years several experimental evidences have shown an involvement of opioid system in alcoholism.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Modelos Animais de Doenças , Receptores Opioides/metabolismo , Alcoolismo/fisiopatologia , Animais , Etanol/efeitos adversos , Etanol/farmacologia , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Ratos , Receptores Opioides/efeitos dos fármacos
17.
Behav Brain Res ; 399: 113052, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33279638

RESUMO

Incubation of eggs is a critical component of parental care in avian species. However, we do not fully understand the neuroendocrine mechanisms underlying this vital behavior. While prolactin is clearly involved, it alone cannot explain the fine-tuning of incubation behavior. The present experiments explored the possibility that incubation is reinforced through a hedonic system in which contact with eggs elicited an opiate-mediated reinforcing state. Blockade of opiate receptors with naloxone reduced time ring neck doves (Streptopelia risoria) spent on the nest, possibly by uncoupling the opiate-receptor mediated hedonic experience of contact with eggs from nest-sitting behavior. Likewise, activation of opiate receptors with morphine also reduced time spent on the nest, possibly by activating an opiate-receptor mediated hedonic experience, hence rendering the eliciting behavior (contact with eggs) unnecessary. Taken together, the results suggest that the opiate system may play a previously unrecognized role in facilitating incubation through reinforcement.


Assuntos
Columbidae/fisiologia , Antagonistas de Entorpecentes/farmacologia , Entorpecentes/farmacologia , Comportamento de Nidação/fisiologia , Peptídeos Opioides/fisiologia , Prazer/fisiologia , Receptores Opioides/efeitos dos fármacos , Reforço Psicológico , Animais , Columbidae/metabolismo , Feminino , Masculino , Morfina/farmacologia , Naloxona/farmacologia , Comportamento de Nidação/efeitos dos fármacos , Peptídeos Opioides/metabolismo , Comportamento Paterno/efeitos dos fármacos , Comportamento Paterno/fisiologia , Prazer/efeitos dos fármacos , Recompensa , Fatores de Tempo
18.
J Ethnopharmacol ; 269: 113750, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33359856

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The plant Combretum hypopilinum Diels (Combretaceae) is used in traditional medicine for the treatment of diarrhoea and other diseases in Africa. Previously, the antidiarrhoeal activity of its methanol leaf extract was reported. However, the mechanism(s) responsible for this activity is yet to be evaluated. AIM OF THE STUDY: This study aimed to elucidate the possible mechanism(s) of antidiarrhoeal activity of methanol leaf extract of Combretum hypopilinum (MECH) in mice. MATERIALS AND METHODS: Phytochemical screening and acute toxicity study were conducted according to standard methods. Adult mice were orally (p.o) administered distilled water (10 ml/kg), MECH (1000 mg/kg) and loperamide (5 mg/kg). The probable mechanisms of antidiarrhoeal activity of MECH were investigated following pretreatment with naloxone (2 mg/kg, subcutaneously), prazosin (1 mg/kg, s.c), yohimbine (2 mg/kg, intraperitoneally), propranolol (1 mg/kg, i.p), pilocarpine (1 mg/kg, s.c) and isosorbide dinitrate (150 mg/kg, p.o) 30 min before administration of MECH (1000 mg/kg). The mice were then subjected to castor oil-induced intestinal motility test. RESULTS: The oral median lethal dose (LD50) of MECH was found to be higher than 5000 mg/kg. There were significant (p < 0.05) decrease in the charcoal movement in the mice treated with the MECH (1000 mg/kg) and loperamide (5 mg/kg). The pretreatment of the mice with naloxone, prazosin and propranolol each significantly (p<0.05) reversed the antidiarrhoeal activity produced by MECH. CONCLUSION: The results obtained in this study suggest the probable involvement of opioidergic and (α1 and ß)-adrenergic systems in the antidiarrhoeal activity of the methanol leaf extract of Combretum hypopilinum.


Assuntos
Antidiarreicos/farmacologia , Combretum/química , Diarreia/tratamento farmacológico , Extratos Vegetais/farmacologia , Receptores Adrenérgicos/efeitos dos fármacos , Receptores Opioides/efeitos dos fármacos , Animais , Antidiarreicos/uso terapêutico , Óleo de Rícino/toxicidade , Diarreia/induzido quimicamente , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Dose Letal Mediana , Loperamida/farmacologia , Loperamida/uso terapêutico , Masculino , Medicina Tradicional Africana , Metanol/química , Camundongos , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Receptores Colinérgicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
19.
J Psychopharmacol ; 34(11): 1200-1209, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32715846

RESUMO

BACKGROUND: Opioids are widely used as an analgesic for the treatment of moderate to severe pain. However, there are interindividual variabilities in opioid response. Current evidence suggests that these variabilities can be attributed to single nucleotide polymorphisms in genes involved in opioid pharmacodynamics and pharmacokinetics. Knowledge of these genetic factors through pharamacogenetic (PGx) testing can help clinicians to more consistently prescribe opioids that can provide patients with maximal clinical benefit and minimal risk of adverse effects. AIM: The research outlined in this literature review identifies variants involved in opioid PGx, which may be an important tool to achieving the goal of personalized pain management. RESULTS: Cytochrome P450 (CYP) 2D6, CYP3A4, CYP3A5, catechol-o-methyltransferase (COMT), adenosine triphosphate binding cassette transporter B1 (ABCB1), opioid receptor mu 1 (OPRM1), and opioid receptor delta 1 (OPRD1) are all important genes involved in opioid drug response, side effect profile and risk of dependence; these are important genetic factors that should be included in potential opioid PGx tests for pain management. CONCLUSIONS: Employing a PGx-guided strategy for prescribing opioids can improve response rate, reduce side effects and increase adherence to treatment plans for pain; more research is needed to explore opioid-related PGx factors for the development and validation of an opioid genetic panel. Optimal prescriptions could also provide healthcare payers with beneficial savings, while reducing the risk of propagating the current opioid crisis.


Assuntos
Analgésicos Opioides/farmacologia , Manejo da Dor , Dor/tratamento farmacológico , Dor/genética , Farmacogenética , Receptores Opioides/efeitos dos fármacos , Receptores Opioides/genética , Analgésicos Opioides/farmacocinética , Humanos
20.
Eur J Pharmacol ; 883: 173306, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32603693

RESUMO

Chemotherapy-induced peripheral neuropathy is a serious adverse effect of chemotherapeutic agents such as paclitaxel. JTC-801, a nociceptin/orphanin FQ opioid peptide (NOP) receptor antagonist, has been reported to attenuate neuropathic pain in several pain models. However, the therapeutic significance and function of JTC-801 in chemotherapy-induced peripheral neuropathy remain unclear. In this study, we determined the effect of JTC-801 on neuropathic pain induced by paclitaxel, and we explored the potential mechanism in the dorsal root ganglion (DRG). The behavioral test showed that single or multiple systemic administrations of JTC-801 significantly alleviated mechanical allodynia in paclitaxel-treated rats. Using Western blot analysis and immunohistochemistry, we found that paclitaxel increased the expression of phosphatidylinositol 3-kinase (PI3K) and phospho-Akt (p-Akt) in the DRG. Double immunofluorescence staining indicated that p-Akt was expressed in neurons in the DRG. Multiple injections of JTC-801 significantly inhibited the activation of Akt and decreased the expression of inflammatory cytokines. The data suggest that JTC-801 alleviates mechanical allodynia associated with paclitaxel-induced neuropathic pain via the PI3K/Akt pathway.


Assuntos
Aminoquinolinas/farmacologia , Analgésicos/farmacologia , Benzamidas/farmacologia , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/prevenção & controle , Antagonistas de Entorpecentes/farmacologia , Neuralgia/prevenção & controle , Limiar da Dor/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Gânglios Espinais/enzimologia , Gânglios Espinais/fisiopatologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/enzimologia , Hiperalgesia/fisiopatologia , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Masculino , Neuralgia/induzido quimicamente , Neuralgia/enzimologia , Neuralgia/fisiopatologia , Paclitaxel , Fosforilação , Ratos Sprague-Dawley , Receptores Opioides/efeitos dos fármacos , Receptores Opioides/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Receptor de Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...